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As Americans live longer, degenerative skeletal dis-
eases, such as osteoporosis, become increasingly
prevalent. Regardless of cause, osteoporosis reflects a
relative enhancement of osteoclast activity. Thus, this
unique bone resorptive cell is a prominent therapeu-
tic target. A number of key observations provide in-
sights into the mechanisms by which precursors
commit to the osteoclast phenotype and how the ma-
ture cell degrades bone. The osteoclast is a member of
the monocyte/macrophage family that differentiates
under the aegis of two critical cytokines, namely
RANK ligand and M-CSF. Tumor necrosis factor
(TNF)-� also promotes osteoclastogenesis, particu-
larly in states of inflammatory osteolysis such as that
attending rheumatoid arthritis. Once differentiated,
the osteoclast forms an intimate relationship with the
bone surface via the �v�3 integrin, which transmits
matrix-derived, cytoskeleton-organizing, signals.
These integrin-transmitted signals include activation
of the associated proteins, c-src, syk, Vav3, and Rho
GTPases. The organized cytoskeleton generates an
isolated microenvironment between the cell’s plasma
membrane and the bone surface in which matrix
mineral is mobilized by the acidic milieu and organic
matrix is degraded by the lysosomal protease, cathep-
sin K. This review focuses on these and other mole-
cules that mediate osteoclast differentiation or func-
tion and thus serve as candidate anti-osteoporosis
therapeutic targets. (Am J Pathol 2007, 170:427–435; DOI:
10.2353/ajpath.2007.060834)

Skeletal mass and structure dictate the life style of
many Americans. Because 50% of women reaching 65
years of age will experience an osteoporotic fracture,
skeletal health has a profound financial and social im-
pact. Despite its static reputation, bone is an ever-chang-
ing organ that is remodeled by the continuous activities of
osteoclasts and osteoblasts. Because osteoclasts are

culprits in many diseases of systemic and local bone
loss, their activity is essential for the process of bone
remodeling that replaces effete, brittle bone with new.

The osteoclast, which is the sole bone-resorbing cell,
is a unique polykaryon whose activity, in the context of
the osteoblast, dictates skeletal mass. All forms of ac-
quired osteoporosis reflect increased osteoclast function
relative to that of the osteoblast. Thus, pharmacological
arrest of the osteoclast is a mainstay of treating systemic
bone loss as attends menopause and as occurs locally,
as in the periarticular osteolysis of rheumatoid arthritis
and skeletal metastasis.

Much of what we know about the osteoclast is deriva-
tive of observations made in osteopetrotic animals and
patients. Osteopetrosis is, by definition, increased bone
mass attributable to arrested bone resorption. Although
virtually all forms of osteopetrosis are genetically based,
the disease may be induced in children treated with
bisphosphonates, which promote osteoclast apoptosis.1

The osteopetrotic spectrum reflects either failed nor-
mal recruitment of osteoclasts or resorptive dysfunction
of the differentiated cells. The subset of osteopetrosis
that is caused by arrested osteoclastogenesis can be
further subdivided into osteoclast-autonomous and non-
autonomous forms.2 Osteoclast-autonomous osteopetro-
ses are those in which the molecular defect is present in
the osteoclast or its precursor. Osteoclast nonautono-
mous forms represent those in which the molecular de-
fect is present in cells that support osteoclast precursor
differentiation or function of the mature resorptive cell.
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Thus, only osteoclast-autonomous osteopetrosis is res-
cued by marrow transplantation, which is the gold stan-
dard for establishing that the genetic defect is restricted
to osteoclast lineage cells.

The pioneering experiments of Donald Walker,3,4 per-
formed in the 1970s, provided the first insights into the
origin of the osteoclast. At that time, there was little infor-
mation regarding the ontogeny of osteoclasts, and in fact,
a popular hypothesis held that the osteoclast and osteo-
blast enjoyed a common precursor. Walker demon-
strated that parabiosis to normal littermates or infusion of
wild-type spleen cells cured osteopetrotic mice. Because
the cause of osteopetrosis is failure of either osteoclast
recruitment or function, Walker’s experiments established
that the murine resorptive cell’s precursor is of hemato-
poietic origin. The cure of an osteopetrotic infant by mar-
row transplantation established that the same holds in
humans (Figure 1).5 This transgender transplant allowed
donor cells to be tracked and thus established that the
osteoclast is of hematopoietic origin. Ultimately, Suda’s
group6 demonstrated that the osteoclast precursor is a
member of the monocyte/macrophage family, and, al-
though the resorptive cell can be generated from mono-
nuclear phagocytes of various tissue sources, the princi-
pal precursor resides in the marrow. This observation laid
the foundation for generating osteoclasts in vitro, thus
providing the opportunity to perform meaningful bio-
chemical and molecular experiments. We now know that
the osteoclast precursor circulates and that assumption
of the osteoclast phenotype in vivo, including multinucle-
ation and the capacity to resorb bone, requires contact
with skeletal matrix.

Osteoclastogenic Cytokines

Suda’s6 initial experiments also revealed that generation
of osteoclasts in culture requires physical contact of the
precursor cells with specific mesenchymal cells such as
osteoblasts or marrow stromal cells. Although perplexing
at first, this critical observation yielded the discovery of

the key osteoclastogenic cytokine, receptor activator of
nuclear factor-�B ligand (RANKL).7,8 RANKL, a member
of the TNF superfamily, is a membrane-residing protein
on osteoblasts and their precursors that recognizes its
receptor, RANK, on marrow macrophages, prompting
them to assume the osteoclast phenotype. Like TNF,
RANKL is a homotrimer but contains four unique surface
loops that distinguish it from other TNF family cytokines.9

Mutagenesis of selected residues in these RANKL loops
modulates RANK’s capacity to promote osteoclastogen-
esis. These studies prompted development of structure-
based inhibitory peptides that arrest bone resorption and
are thus therapeutic candidates (Figure 2).10 Although
RANKL, in physiological circumstances, is principally ex-
pressed by mesenchymal cells of osteoblast lineage, the
osteoclastogenic cytokine is produced in abundance, by
T lymphocytes in states of skeletal inflammation such as
rheumatoid arthritis.11 In this circumstance, RANKL may
be cleaved from the cell membrane and then interact with
RANK as a soluble ligand.

RANKL activity is negatively regulated in the circula-
tion by osteoprotegerin (OPG), which competes with
RANK as a soluble decoy receptor.12 In fact, the discov-
ery of RANKL as the key osteoclastogenic cytokine fol-
lowed on the observation that mice overexpressing OPG
develop osteopetrosis. OPG, like RANKL, is produced by
osteoblast lineage cells,13 and disturbance of the OPG/
RANKL ratio seems to dictate the rate of bone resorption
in a number of pathological states.14 Furthermore, ho-
mozygous deletion of the OPG gene, TNFRSF11B,
causes juvenile Paget’s disease.15

TNF-� promotes osteoclastogenesis in conditions
such as inflammatory osteolysis16 and interestingly, post-
menopausal osteoporosis.17 The proinflammatory cyto-

Figure 1. First cure of patient with malignant osteopetrosis. The patient, a
3-month-old female, received a marrow transplant from her HLA/MLC com-
patible brother. Dramatic resolution of the sclerotic bone was evident within
7 weeks. The patient is well 27 years later. The presence of Y-chromosomes
in her osteoclasts after transplant established the cell’s hematopoietic ontog-
eny in man (reprinted with permission from the N Engl J Med 1980,
302:701–708).5

Figure 2. Osteoclast differentiation and function. Osteoblast lineage cells
produce the osteoclastogenic cytokines RANKL and M-CSF, which recognize
their respective receptors RANK and c-fms on macrophages, principally of
marrow origin. OPG, also synthesized by osteoblast lineage cells, is a soluble
decoy receptor that binds RANKL, thus preventing its interaction with RANK.
RANKL and M-CSF are sufficient to promote the osteoclast phenotype. On
contact with bone, the osteoclast polarizes via matrix-derived signals trans-
mitted by the �v�3 integrin, enabling the cell to form an isolated microen-
vironment between itself and the bone surface. The microenvironment is
acidified by H�ATPase-mediated extracellular transport of protons. Intracel-
lular pH is maintained by an electroneutral HCO3

�/Cl� exchanger. The Cl�

entering the cell is released into the resorptive microenvironment by an ion
channel charge coupled to the H�ATPase. The acidified microenvironment
mobilizes the bone mineral, thereby exposing the organic phase of bone that
is degraded by cathepsin K (modified and reprinted with permission from
Science 2000, 289:1504–1508).
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kine enjoys a potent synergistic relationship with RANKL,
but whether TNF-�, alone, prompts osteoclast differenti-
ation is controversial. Although Lam and colleagues18

report that TNF-� is incapable of inducing osteoclast
precursors to differentiate unless attended by permissive
levels of, or primed by, RANKL, Kim and colleagues19

found that the inflammatory cytokine is capable of oste-
oclastogenesis in the absence of RANK signaling in vitro
if attended by transforming growth factor (TGF)-�. Al-
though the latter in vitro observation is provocative, the
failure of TNF-� to induce meaningful osteoclast forma-
tion in RANK-deficient mice calls into question the bio-
logical relevance of TGF-� as a substitute for RANKL.20

On the other hand, there is reasonable evidence that the
capacity of TNF-� to activate the fully differentiated oste-
oclast may occur independently of RANK signaling.21,22

The unique osteoclastogenic properties of RANKL re-
flect structural components that dictate its capacity to
uniquely occupy RANK,9 which activates TRAF6, proba-
bly an essential step in osteoclast differentiation. In fact,
competition for TRAF6 by the LIM domain-only protein
FHL2 reduces TRAF6/RANK association and osteoclas-
togenesis.23 Although other receptors such as interleukin
(IL)-1R1, CD40, and Toll-like receptor also recruit TRAF6,
they do not do so as abundantly as RANK, which may
explain their failure to induce osteoclast differentiation
alone.24,25

On the other hand, the role of TRAF6 in osteoclasto-
genesis is controversial. Two laboratories independently
generated TRAF6�/� mice, and both strains are osteo-
petrotic. In one case, osteoclasts are abundant but dys-
functional because of failure to organize their cytoskele-
ton.26 In contrast, the other TRAF6�/� strain is devoid of
osteoclasts.27 The fact that a cell-permeable peptide,
based on the crystal structure of the RANK sequence
recognizing TRAF6, arrests osteoclastogenesis in vitro28

supports the concept that the adaptor molecule is essen-
tial for osteoclast differentiation.

RANKL promotes osteoclastogenesis by stimulating a
variety of transcription factors and all three families of
MAP kinases.2 The key genomic osteoclastogenic event
is activation of an AP-1/NFATc1 transcription com-
plex.29,30 RANKL generates this complex by inducing
expression of the c-Fos family31 and promoting nuclear
translocation of Jun proteins.32 NFATc1, in turn, is de-
phosphorylated by calcineurin, which also promotes its
nuclear translocation. Importantly, deletion or inactivation
of c-Fos,33 c-Jun,32 or NFATc134 results in failed oste-
oclast differentiation and severe osteopetrosis. We find
that in keeping with its inability to promote osteoclasto-
genesis on its own, TNF-� is an inefficient activator of
NFATc1 (W. Zou, unpublished data). RANKL also pro-
motes bone resorption by inducing the mature osteoclast
to generate a complex composed of its receptor, TRAF6,
and c-Src, which the cytokine specifically recruits to lipid
rafts in the plasma membrane.35 This event requires or-
ganization of fibrillar actin and is mediated via the phos-
phoinosotide-3-kinase (PI3-K)/AKT pathway.

TNF-�, which is expressed as both a membrane-resid-
ing and soluble molecule, is probably the key cytokine
mediating the periarticular bone loss of rheumatoid ar-

thritis.16 It promotes osteoclast formation and activation
in the inflamed joint by stimulating RANKL production by
marrow stromal cells and by directly stimulating differen-
tiation of osteoclast precursors.18,36,37 TNF-� and RANKL
are synergistic, and minimal levels of one markedly en-
hance the osteoclastogenic capacity of the other.18

TNF-� targets two membrane receptors, but its oste-
oclastogenic properties are mediated by TNF receptor
type 1 (p55r). Although controversial, we find TNF recep-
tor type 2 (p75r) is actually anti-osteoclastogenic. Thus,
mice bearing only p55r generate substantially more os-
teoclasts in response to the cytokine than do those ex-
pressing only p75r.38 In keeping with this observation,
soluble TNF-�, which preferentially activates p55r has
potent osteoclastogenic properties, whereas those of the
membrane-associated cytokine, which recognizes p75r,
are negligible.38 Likewise, lipopolysaccharide, which is
central to the alveolar bone loss attending periodontal
inflammation, mediates its osteoclastogenic effects via
p55r.39

TNF is produced and targeted by a variety of cells in
the inflamed joint. Osteoclast precursor and marrow stro-
mal cells each express p55r.40 Although both cell types
are central to pathogenesis of inflammatory osteolysis,
the greater contribution, in states of moderate inflamma-
tion, is made by stromal cells, which produce the oste-
oclastogenic cytokines, RANKL, M-CSF, and IL-1 when
exposed to TNF-�. As the inflammatory process be-
comes more aggressive, TNF-� may promote osteoclast
formation by directly stimulating the cell’s precursors in
the absence of stromal cells responsive to the
cytokine.18,36,37

IL-1, enhances osteoclastogenesis only in the pres-
ence of permissive levels of RANKL.40 IL-1 also mediates
a substantial component of TNF-�’s osteoclastogenic ef-
fect in both marrow stromal cells and osteoclast precur-
sors and does so in a p38 MAP kinase-dependent man-
ner.40 The intimate relationship between TNF-� and IL-1
is reflected by the fact that optimal arrest of inflammatory
osteoclastogenesis and bone destruction requires block-
ade of both.41

Macrophage colony stimulating factor (M-CSF), which
like RANKL is produced by marrow stromal cells, is es-
sential for macrophage survival and proliferation as well
as regulating osteoclastogenesis. The pivotal role of M-
CSF in osteoclast recruitment is reflected by the op/op
mouse, which lacks functional M-CSF and has oste-
oclast-deficient osteopetrosis.42 In fact, generation of
pure populations of osteoclasts in vitro is achieved by
culturing marrow macrophages in the presence of only
RANKL and M-CSF.

A major component of pathological bone loss as oc-
curs in inflammatory osteolysis, reflects enhanced ex-
pression of RANKL and M-CSF induced by excess of
local cytokines, particularly TNF-�.40 Interestingly, TNF-�
also promotes c-fms production, and the osteolysis of the
inflamed joint is completely arrested by blocking the M-
CSF receptor.37,43 In this regard, osteoclastogenesis
may be pathologically increased by hypersensitivity to
M-CSF. Such a scenario exists in mice lacking SHIP1, a
lipid phosphatase that dephosphorylates phosphatidyl-
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inositol 3,4,5-triphosphate and thus, inactivates AKT.44

SHIP�/� osteoclasts are enlarged and aggressively
resorb bone prompting an osteoporotic phenotype in
vivo.

The sole M-CSF receptor, c-fms, is a tyrosine kinase
that autophosphorylates on occupancy, thereby activat-
ing ERK1/2 and PI3-K/AKT. This signaling pathway pro-
motes osteoclast precursor proliferation and survival of
the differentiating and differentiated osteoclast.45 Pro-
longed ERK activation by M-CSF prompts its nuclear
translocation where it induces c-Fos and probably
NFATc1 expression.45

Using a chimeric receptor approach, we have estab-
lished that c-fms activation involves phosphorylation of
Y807, which enhances the receptor’s kinase activity,
leading to autophosphorylation of Y559, Y697, and
Y721.46 These phosphorylated tyrosine residues serve as
c-fms docking sites for the SH2 domains of a series of
downstream signaling molecules. Characterization of the
role of individual tyrosine residues in the c-fms cytoplas-
mic domain was established in authentic osteoclasts,
which express the wild-type M-CSF receptor. Like c-fms,
the erythropoietin (Epo) receptor dimerizes on occu-
pancy. Hence, our strategy involved transduction of mar-
row macrophages with a plasmid coding for the external
domain of the Epo receptor linked to the transmembrane
and cytoplasmic domains of c-fms. Stimulation with Epo
is as effective as M-CSF in the osteoclastogenic process
in these transductants, permitting meaningful evaluation
of c-fms tyrosine mutations on authentic osteoclast differ-
entiation and activation.42

Osteoclast Formation and Function

The capacity to generate osteoclasts in vitro and to phys-
iologically confirm the significance of candidate oste-
oclast-regulating molecules by their genetic deletion in
vivo has yielded insights into the mechanisms of oste-
oclast differentiation and cellular resorption of bone. The
most successful strategy has been to determine whether
genetically manipulated mice have a bone phenotype,
principally osteopetrosis in states of osteoclast loss of
function and osteoporosis when resorptive activity is in-
creased. This approach permitted identification of a num-
ber of essential regulators of osteoclast formation and
function. For example, the discovery of osteoclast-defi-
cient osteopetrosis in mice lacking PU.1 confirmed that
the ETS domain transcription factor, which is essential for
initial macrophage differentiation, mediates the earliest
known event in osteoclastogenesis.47

Mice lacking the p50 and p52 nuclear factor (NF)-�B
subunits also fail to generate osteoclasts and are osteo-
petrotic.48 NF-�B is activated in osteoclast precursors by
IKK via the classical (canonical) and alternative path-
ways. The � isoform of IKK induces the classic pathway
by phosphorylating the cytosolic NF-�B binding proteins,
I�Bs, thus targeting them for proteosomal degradation
thereby mobilizing NF-�B’s transcriptional activity. Impor-
tantly, administration of nondegradable I�B peptides or
those inhibiting NEMO-mediated IKK activation, prevents

the bone destructive complications of inflammatory arthri-
tis in mice.49–52

The role of IKK� in basal and pathological osteoclas-
togenesis is less clear than that of the � isoform. IKK�
modulates the alternative NF-�B pathway and mice lack-
ing NF-�B-inducing kinase (NIK), are resistant to RANKL-
stimulated osteoclastogenesis and the bone destruction
attending inflammatory arthritis.53 On the other hand,
mice bearing an IKK�-inactivating mutation are indistin-
guishable from wild type as regards lipopolysaccharide-
induced osteoclastogenesis and periarticular osteolysis.54

Once differentiated, the capacity of the mature oste-
oclast to resorb bone depends on its ability to synthesize
and mobilize a series of electrolytes and degradative
enzymes. Hence, the resorbing osteoclast must create
an isolated microenvironment between itself and the
bone surface into which it secretes protons via an elec-
trogenic H�ATPase (proton pump).55,56 In fact, mutations
of the H�ATPase is the most common known cause of
osteopetrosis in man.57 The potential intracellular alkalin-
ity induced by the massive proton transport is prevented
by electroneutral chloride/bicarbonate exchanger.58 The
Cl� that enters the cell in exchange for HCO3

�, is trans-
ported into the resorptive microenvironment via a chan-
nel, charge coupled to the H�ATPase, thus generating
HCl, which produces an ambient pH approximating
4.5.59 The acidity within the degradative space mobilizes
the mineral phase exposing the organic matrix of bone,
which is subsequently degraded by the collagenolytic
lysosomal protease cathepsin K.60,61 Inactivating muta-
tions of the Cl� channel also cause human osteopetro-
sis,62 whereas the sclerosing bone disease pyknodysos-
tosis reflects failure to produce functional cathepsin K.61

Osteoclast Cytoskeleton

The osteoclast enjoys a unique cytoskeleton that enables
it to polarize on bone and thus degrade mineralized
matrix. Certainly, the two most dramatic features of the
osteoclast cytoskeleton are its ruffled membrane and
actin rings, both of which are formed when the cell con-
tacts bone. The ruffled membrane is the product of intra-
cellular acidified vesicles transiting, probably via micro-
tubules, to the bone-apposed plasma membrane63 into
which they insert under the aegis of the small GTPase
Rab3D.64 The product of this event is delivery of the
H�ATPase into the plasma membrane, which greatly in-
creases its surface extent, yielding a villous-like structure
unique to the osteoclast. It is the cell’s resorptive or-
ganelle and appears only during the process of bone
degradation (Figure 3). Unlike most other cells, oste-
oclasts do not organize their fibrillar actin into stress
fibers, but instead form actin rings or sealing zones on
contact with bone. The actin ring is a circumferential
structure that surrounds the ruffled membrane and iso-
lates the acidified resorptive microenvironment from the
general extracellular space.65

The fact that skeletal degradation requires physical
intimacy between the osteoclast and bone indicates that
molecules mediating cell/matrix recognition and attach-
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ment must be involved. Cell/matrix recognition is medi-
ated by integrins. These �/� heterodimers consist of long
extracellular and relatively short intracellular domains that
function not only to attach cells to extracellular matrix but
also to transmit matrix-derived signals to the cell’s inte-
rior. We have discovered that the �v family of integrins
are differentially expressed by osteoclasts during their
maturation and that two members, namely �v�3 and
�v�5, are functional in these cells. �v�5, but not �v�3
appears on marrow macrophages maintained in the sole
presence of M-CSF.66 With exposure to RANKL and as-
sumption of the osteoclast phenotype, �v�5 disappears
to be replaced by �v�3.67 Interestingly, �v�5 deficiency
accelerates bone loss in the estrogenopryvic68 state
whereas oophorectomized animals lacking �v�3 are pro-

tected.69 Thus, �v�3 presents as a candidate anti-re-
sorptive therapeutic target and in fact, small molecule
inhibitors of the integrin are in clinical trial for treatment of
osteoporosis.70–72

The �v family of integrins recognizes the amino acid
motif Arg-Gly-Asp (RGD), resident in a number of bone
matrix proteins such as osteopontin and bone sialopro-
tein. Occupancy by these ligands activates the integrin
by changing its conformation.73 This event, known as
outside-in signaling, induces a number of intracellular
events, one of the most prominent being organization of
the actin cytoskeleton.

�v�3 is also modulated by an inside-out mechanism
that is stimulated by intracellular events, such as those
stimulated by M-CSF occupancy of its receptor c-fms.45

C-fms autophosphorylation of Tyr697 activates the inte-
grin by signals that alter the conformation of its cytoplas-
mic domain.45 In fact, �v�3 and c-fms enjoy a collabo-
rative relationship during osteoclastogenesis. This
relationship is illustrated by the capacity of high-dose
M-CSF to rescue the retarded osteoclast differentiation,
in a c-Fos- and ERK1/2-dependent manner that occurs
on �3 integrin subunit deletion.45 ERK seems to regulate
the osteoclast by two distinct pathways. Short-term acti-
vation of the MAP kinase stimulates proliferation of the
resorptive cell’s precursors whereas prolonged ERK ac-
tivation prompts its nuclear translocation where it induces
expression of early immediate genes, such as c-Fos,
essential to osteoclast differentiation.45 The paradox of
arrested osteoclast differentiation of �v�3-deficient pre-
cursors in vitro in face of a 3.5-fold increase in vivo of
mature osteoclasts in mice lacking the integrin may be
explained by the abundant M-CSF present in the marrow
of the mutant animals.45,66 Although exposure of �v�3-
deficient osteoclasts to high-dose M-CSF rescues oste-
oclastogenesis and cytoskeletal organization, the integrin
is necessary for the cell’s capacity to resorb bone.45

Because �v�3 is the principal integrin expressed by
osteoclasts and competitive ligands arrest bone resorp-
tion in vitro,70 we deleted the �3 integrin subunit in
mice.66 Mice lacking �v�3 generate osteoclasts incapa-
ble of optimal resorptive activity as their ruffled mem-
branes and actin rings are abnormal in vivo.66 The de-
ranged cytoskeleton of the mutant osteoclasts is also
manifest by failure of the cell to spread in vitro66 (Figure
4). In consequence, �3�/� mice progressively increase
bone mass with age. Interestingly, �v�3 also regulates
osteoclast longevity. The unoccupied integrin transmits a
positive death signal mediated via caspase 8, and, there-
fore, resorptive cells lacking �v�3 actually survive longer
than wild type.74

The osteoclast functions in a cyclical manner, first
migrating to a bone resorptive site to which it attaches. It
degrades the underlying bone, detaches, and reinitiates
the cycle. During matrix attachment, �v�3 is predomi-
nantly in its inactive conformation and resident in podo-
somes, which in turn reside in the actin ring.65 Podo-
somes are dynamic, adhesive dot-like structures
consisting of an actin core surrounded by the integrin
and associated cytoskeletal proteins such as vinculin,
�-actinin, and talin. Thus, the signals mediating matrix

Figure 3. Formation of the osteoclast ruffled membrane. The unattached
osteoclast contains numerous acidified vesicles bearing H�ATPases (proton
pumps) illustrated as spikes. On attachment to bone, matrix-derived signals
polarize the acidified vesicles to the bone-apposed plasma membrane into
which they insert under the aegis of Rab3D. Insertion of the vesicles into the
plasma membrane greatly increases its complexity and delivers the
H�ATPases to the resorptive microenvironment.
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attachment probably do not require activated �v�3.
When bound to a ligand, �v�3 leaves the podosome and
moves to lamellipodia, which mediate osteoclast motility.
During bone resorption, the integrin is found in the ruffled
membrane.

Localization of �v�3 to the podosome requires intra-
cellular signals mediated via the integrin’s cytoplasmic
domain.65 For example, occupancy of c-fms promotes
inside-out signaling of the integrin in a process uniquely
requiring Ser752 in the �3 cytoplasmic tail, thereby alter-
ing the conformation of the �v�3 external domain to the
activated state, which is required for growth factor-stim-
ulated resorption.65,75 Given their transience and dot-like
architecture, it is unlikely that �v�3-bearing podosomes
are the structures isolating the osteoclast-resorptive mi-
croenvironment from the general extracellular space. In-
tracellular transmission of matrix-derived signals, which
organize the cell’s cytoskeleton, would be a more likely
role for the integrin.

M-CSF and �v�3 collaboratively induce cytoskeletal
organization by transiting Rho family proteins, RhoA and
Rac, from their inactive GDP-bound to their active GTP-
bound states.45 This observation suggests that mole-
cules that regulate Rho family GTPases may mediate
integrin activation. In fact, Vav3, a Rac-specific guanine
nucleotide exchange factor (GEF) in osteoclasts, is es-
sential for organizing the cell’s cytoskeleton and its bone
resorptive activity.76 In consequence, Vav3-deficient os-
teoclasts fail to activate Rac in response to M-CSF or
�v�3 occupancy. These mutant osteoclasts resemble
those lacking �v�3. Moreover, Vav3-deficient mice have
increased skeletal mass and are protected from bone
loss induced by systemic resorption stimuli such as
RANKL and parathyroid hormone.

In 1991, Soriano and colleagues77 made the surprising
observation that the dominant phenotype of the c-src
knockout mouse is osteopetrosis, subsequently shown to
reflect failure of the mutant osteoclasts to organize their
cytoskeleton. C-src regulates the osteoclast cytoskeleton
both as an adaptor protein and tyrosine kinase.78,79 In
fact both roles of c-src are necessary for �v�3 to function

in the bone resorptive cell. We find c-src constitutively
associated with �v�3 in osteoclasts but activated on
integrin occupancy. Activated �v�3 also recruits the ty-
rosine kinase syk to its cytoplasmic domain, where it is
phosphorylated by c-src. Syk, in turn, is a crucial up-
stream regulator of Vav3. These events occur in the con-
text of the ITAM proteins, Dap12 and FcR�, which when
deleted in tandem arrest terminal osteoclastogenesis be-
cause of failed expression of the critical osteoclastogenic
transcription factor, NFATc1.80 Thus, �v�3 activation re-
cruits a signaling complex composed of c-src, Syk, ITAM
proteins, Vav3, and Rac, which in turn organizes the cell’s
cytoskeleton thereby promoting bone resorption.

Glucocorticoids and the Osteoclast

Glucocorticoid (GC) therapy is frequently complicated by
severe osteoporosis, second in frequency only to that
after menopause. The general lack of success in treating
steroid-induced bone loss suggests its pathogenesis is
incompletely understood. There is little question that GCs
suppress bone formation in vivo.81 Surprisingly, however,
addition of GCs to osteoprogenitor cells in vitro actually
increases their bone-forming capacity.82,83 This paradox
raises the possibility that GC-suppression of bone forma-
tion in vivo reflects, at least in part, targeting of the steroid
to intermediary cells, which inhibit the osteoblast.

Bone remodeling is an ever-occurring event charac-
terized by sequential coupling of osteoclasts and osteo-
blasts. Remodeling units are initiated by the appearance
of osteoclasts. After degrading a packet of bone, the
resorptive cells are replaced by osteoblasts, which syn-
thesize new bone. The osteoporosis attending GC ther-
apy reflects failure of osteoblasts to restore fully bone
previously resorbed in the remodeling site. Thus, by a
mechanism yet to be discovered, recruitment of osteo-
blasts to the remodeling process requires prior oste-
oclastic activity. This scenario is in keeping with the os-
teoclast being the intermediary cell by which GCs
suppress bone formation. In fact, dexamethasone di-
rectly targets the mature osteoclast and specifically de-
ranges its cytoskeleton, an event attended by arrested
activation of RhoA, Rac, and Vav3.84 Steroid-treated re-
sorptive cells do not spread nor do they form actin rings

Figure 5. Glucocorticoids disrupt the osteoclast cytoskeleton. Osteoclasts,
generated on dentin in the presence and absence of dexamethasone (DEX),
were stained with FITC-phalloidin to visualize the actin cytoskeleton. The
well-demarcated actin rings present in naı̈ve osteoclasts are disrupted by the
glucocorticoid (reprinted with permission from the J Clin Invest 2006,
116:2152–2160).84Figure 4. �v�3 integrin-deficient osteoclasts have an abnormal cytoskeleton.

Both wild-type (�3�/�) and �3�/� osteoclasts contain tartrate-resistant acid
phosphatase (red reaction product) and are multinucleated. Whereas wild-
type osteoclasts spread in culture, those lacking �v�3 fail to do so, mani-
festing a deranged cytoskeleton (reprinted with permission from the J Clin
Invest 2000, 105:433–440).66
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(Figure 5). This cytoskeletal disruption blunts bone re-
sorption in vitro and in vivo and, reflecting the remodeling
cycle, translates into diminished bone formation.

It seems, therefore, that GCs suppress osteoblast
function directly and indirectly via the osteoclast. The
inhibited remodeling observed in steroid-treated patients
and animals carries implications beyond bone mass.
Specifically, the process of remodeling must replace ef-
fete bone with new to prevent brittleness. Thus, arrested
remodeling in conditions such as chronic renal failure85

results in qualitatively and structurally compromised
bone. The same occurs in some patients treated for many
years with resorption-inhibiting bisphosphonates, which
dampen remodeling.86 The retarded bone remodeling
characterizing prolonged GC therapy raises the counter-
intuitive argument that prevention of skeletal complica-
tions may actually require some restoration of osteoclast
function.

In contrast to its prolonged suppressive effects, short-
term GC therapy, which induces extremely rapid skeletal
loss, is characterized by transiently increased bone re-
sorption.87 Why short-term GC therapy stimulates, rather
than blunts, osteoclast function is unknown. However, the
inflammatory cytokines, often abundant in GC candidate
diseases, prevent the cytoskeleton-disruptive effects of
the steroid and may therefore enhance resorptive activity
in the early stages of treatment.77 As inflammatory cyto-
kines are suppressed by chronic GC-exposure, the os-
teoclast-suppressive properties of the steroid become
manifest.

Conclusion

The osteoclast is central to skeletal health as regards not
only bone mass but also bone quality. The realization that
the cell is of hematopoietic origin and subject to cytokine
regulation laid the foundation for discovering the intracel-
lular signals that mediate its resorptive capacity. Cy-
toskeletal organization consequent to integrin and growth
factor receptor activation are integral to osteoclast func-
tion and offer new anti-resorptive therapeutic targets,
possibly avoiding the complications of prolonged sup-
pression of the remodeling process.
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